Roles of TGF-β Signals in Endothelial-Mesenchymal Transition during Cardiac Fibrosis

نویسندگان

  • Yasuhiro Yoshimatsu
  • Tetsuro Watabe
چکیده

Most cardiac diseases caused by inflammation are associated with fibrosis in the heart. Fibrosis is characterized by the accumulation of fibroblasts and excess deposition of extracellular matrix (ECM), which results in the distorted organ architecture and function. Recent studies revealed that cardiac fibroblasts are heterogeneous with multiple origins. Endothelial-mesenchymal transition (EndMT) plays important roles in the formation of cardiac fibroblasts during pathological settings. EndMT is regulated by signaling pathways mediated by cytokines including transforming growth factor (TGF)-β. Better understanding of the mechanisms of the formation of cardiac fibroblasts via EndMT may provide an opportunity to develop therapeutic strategies to cure heart diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The mechanism of TGF-β/miR-155/c-Ski regulates endothelial–mesenchymal transition in human coronary artery endothelial cells

Human coronary artery endothelial cells (HCAECs) have the potential to undergo fibrogenic endothelial-mesenchymal transition (EndMT), which results in matrix-producing fibroblasts and thereby contributes to the pathogenesis of cardiac fibrosis. Recently, the profibrotic cytokine transforming growth factor-β (TGF-β) is shown to be the crucial pathogenic driver which has been verified to induce E...

متن کامل

Epithelial–mesenchymal transition is regulated at post-transcriptional levels by transforming growth factor-β signaling during tumor progression

Transforming growth factor (TGF)-β acts as a tumor suppressor during cancer initiation, but as a tumor promoter during tumor progression. It has become increasingly clear that TGF-β plays fundamental roles in multiple steps of tumor progression, including epithelial-mesenchymal transition (EMT). The EMT, first described by developmental biologists at the beginning of the 1980s, plays crucial ro...

متن کامل

Transforming growth factor-β-induced endothelial-to-mesenchymal transition is partly mediated by microRNA-21.

OBJECTIVE MicroRNAs are a class of small ribonucleotides regulating gene/protein targets by transcript degradation or translational inhibition. Transforming growth factor-β (TGF-β) is involved in cardiac fibrosis partly by stimulation of endothelial-to-mesenchymal transition (EndMT). Here, we investigated whether microRNA (miR)-21, a microRNA enriched in fibroblasts and involved in general fibr...

متن کامل

The Roles of Mitogen-Activated Protein Kinase Pathways in TGF-β-Induced Epithelial-Mesenchymal Transition

The mitogen-activated protein kinase (MAPK) pathway allows cells to interpret external signals and respond appropriately, especially during the epithelial-mesenchymal transition (EMT). EMT is an important process during embryonic development, fibrosis, and tumor progression in which epithelial cells acquire mesenchymal, fibroblast-like properties and show reduced intercellular adhesion and incr...

متن کامل

Losartan Attenuates Myocardial Endothelial-To-Mesenchymal Transition in Spontaneous Hypertensive Rats via Inhibiting TGF-β/Smad Signaling

BACKGROUND Losartan plays an important role in the inhibition of myocardial fibrosis. But the underlying mechanism is not entirely clear. Emerging evidences have indicated that endothelial-to-mesenchymal transition (EndMT) plays a crucial role in cardiac fibrosis. Here the present study aims to first investigated the effect of Losartan on EndMT in cardiac fibrosis of spontaneous hypertensive ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2011